Tensor-structured methods for parameter dependent and stochastic elliptic PDEs
نویسنده
چکیده
Modern methods of tensor-product decomposition allow an efficient data-sparse approximation of functions and operators in higher dimensions [5]. The recent quantics-TT (QTT) tensor method allows to represent the multidimensional data with log-volume complexity [1, 2, 3]. We discuss the convergence rate of the Tucker, canonical and QTT stochastic collocation tensor approximations to the solution of multi-parametric elliptic PDEs, and describe efficient iterative methods for solving arising highdimensional parameter-dependent algebraic systems of equations [4, 6]. Such PDEs arise, in particular, in the parametric, deterministic reformulation of elliptic PDEs with random field input, based on the M -term truncated Karhunen-Loève expansion. We consider both the case of additive and log-additive dependence on the multivariate parameter in RM . The local-global versions of the canonical and QTTrank estimates for the system matrix in terms of the parameter space dimension is presented. We discuss tensor-truncated iteration based on the construction of solution-adaptive preconditioner providing linear complexity in M . Various numerical tests presented indicate that the computational complexity of the canonical and QTT tensor methods scales almost linearly in the dimension of parametric space M , and the adaptive preconditioner provides robust convergence in both additive and log-additive cases.
منابع مشابه
Tensor-Structured Galerkin Approximation of Parametric and Stochastic Elliptic PDEs
We investigate the convergence rate of approximations by finite sums of rank-1 tensors of solutions of multi-parametric elliptic PDEs. Such PDEs arise, for example, in the parametric, deterministic reformulation of elliptic PDEs with random field inputs, based for example, on the M -term truncated Karhunen-Loève expansion. Our approach could be regarded as either a class of compressed approxima...
متن کاملQuantics-TT Collocation Approximation of Parameter-Dependent and Stochastic Elliptic PDEs
We investigate the convergence rate of QTT stochastic collocation tensor approximations to solutions of multi-parametric elliptic PDEs, and construct efficient iterative methods for solving arising high-dimensional parameter-dependent algebraic systems of equations. Such PDEs arise, for example, in the parametric, deterministic reformulation of elliptic PDEs with random field inputs, based for ...
متن کاملLow-Rank Tensor Krylov Subspace Methods for Parametrized Linear Systems
We consider linear systems A(α)x(α) = b(α) depending on possibly many parameters α = (α1, . . . ,αp). Solving these systems simultaneously for a standard discretization of the parameter space would require a computational effort growing exponentially in the number of parameters. We show that this curse of dimensionality can be avoided for sufficiently smooth parameter dependencies. For this pur...
متن کاملDirect tensor-product solution of one-dimensional elliptic equations with parameter-dependent coefficients
We consider a one-dimensional second-order elliptic equation with a high-dimensional parameter in a hypercube as a parametric domain. Such a problem arises, for example, from the Karhunen Loève expansion of a stochastic PDE posed in a onedimensional physical domain. For the discretization in the parametric domain we use the collocation on a tensor-product grid. The paper is focused on the tenso...
متن کاملSparse tensor discretizations of elliptic PDEs with random input data
We consider a stochastic Galerkin and collocation discretization scheme for solving elliptic PDEs with random coefficients and forcing term, which are assumed to depend on a finite, but possibly large number of random variables. Both methods consist of a hierarchic wavelet discretization in space and a sequence of hierarchic approximations to the law of the random solution in probability space....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010